Evidence for indigenous nitrogen in sedimentary and aeolian deposits from the Curiosity rover investigations at Gale crater, Mars.

نویسندگان

  • Jennifer C Stern
  • Brad Sutter
  • Caroline Freissinet
  • Rafael Navarro-González
  • Christopher P McKay
  • P Douglas Archer
  • Arnaud Buch
  • Anna E Brunner
  • Patrice Coll
  • Jennifer L Eigenbrode
  • Alberto G Fairen
  • Heather B Franz
  • Daniel P Glavin
  • Srishti Kashyap
  • Amy C McAdam
  • Douglas W Ming
  • Andrew Steele
  • Cyril Szopa
  • James J Wray
  • F Javier Martín-Torres
  • Maria-Paz Zorzano
  • Pamela G Conrad
  • Paul R Mahaffy
چکیده

The Sample Analysis at Mars (SAM) investigation on the Mars Science Laboratory (MSL) Curiosity rover has detected oxidized nitrogen-bearing compounds during pyrolysis of scooped aeolian sediments and drilled sedimentary deposits within Gale crater. Total N concentrations ranged from 20 to 250 nmol N per sample. After subtraction of known N sources in SAM, our results support the equivalent of 110-300 ppm of nitrate in the Rocknest (RN) aeolian samples, and 70-260 and 330-1,100 ppm nitrate in John Klein (JK) and Cumberland (CB) mudstone deposits, respectively. Discovery of indigenous martian nitrogen in Mars surface materials has important implications for habitability and, specifically, for the potential evolution of a nitrogen cycle at some point in martian history. The detection of nitrate in both wind-drifted fines (RN) and in mudstone (JK, CB) is likely a result of N2 fixation to nitrate generated by thermal shock from impact or volcanic plume lightning on ancient Mars. Fixed nitrogen could have facilitated the development of a primitive nitrogen cycle on the surface of ancient Mars, potentially providing a biochemically accessible source of nitrogen.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Redox stratification of an ancient lake in Gale crater, Mars.

In 2012, NASA's Curiosity rover landed on Mars to assess its potential as a habitat for past life and investigate the paleoclimate record preserved by sedimentary rocks inside the ~150-kilometer-diameter Gale impact crater. Geological reconstructions from Curiosity rover data have revealed an ancient, habitable lake environment fed by rivers draining into the crater. We synthesize geochemical a...

متن کامل

Wind-blown sandstones cemented by sulfate and clay minerals in Gale Crater, Mars

Gale Crater contains Mount Sharp, a ~5km thick stratigraphic record of Mars’ early environmental history. The strata comprising Mount Sharp are believed to be sedimentary in origin, but the specific depositional environments recorded by the rocks remain speculative. We present orbital evidence for the occurrence of eolian sandstones within Gale Crater and the lower reaches of Mount Sharp, inclu...

متن کامل

Modeling the thermal and physical evolution of Mount Sharp's sedimentary rocks, Gale Crater, Mars: Implications for diagenesis on the MSL Curiosity rover traverse

Gale Crater, the Mars Science Laboratory (MSL) landing site, contains a central mound, named Aeolis Mons (informally Mount Sharp) that preserves 5 km of sedimentary stratigraphy. Formation scenarios include (1) complete filling of Gale Crater followed by partial sediment removal or (2) building of a central deposit with morphology controlled by slope winds and only incomplete sedimentary fill. ...

متن کامل

Deposition, exhumation, and paleoclimate of an ancient lake deposit, Gale crater, Mars.

The landforms of northern Gale crater on Mars expose thick sequences of sedimentary rocks. Based on images obtained by the Curiosity rover, we interpret these outcrops as evidence for past fluvial, deltaic, and lacustrine environments. Degradation of the crater wall and rim probably supplied these sediments, which advanced inward from the wall, infilling both the crater and an internal lake bas...

متن کامل

Evidence for a Global Martian Soil Composition Extends to Gale Crater

Introduction: The eolian bedform within Gale Crater referred to as "Rocknest" was investigated by the science instruments of the Curiosity Mars rover. Physical, chemical and mineralogical results are consistent with data collected from soils at other landing sites, suggesting a globally-similar composition. Results from the Curiosity payload from Rocknest should be considered relevant beyond a ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 112 23  شماره 

صفحات  -

تاریخ انتشار 2015